- One important measure of the goodness of an opamp or an opamp circuit is the common mode rejection ratio (CMRR)
- Ideally, opamps are expected to amplify the differences between v_1 and v_2 with nearly infinite gain
- Due to transistor nonidealities, some small amount of amplification occurs due to the common signal of both inputs

• We would like to have an infinite CMRR

- A typical CMRR is 80-100dB at low frequency
- Would the CMRR improve, or get smaller with increasing frequency?

• Not really a problem for inverting amplifier configurations --- why?

• But definitely a problem for noninverting amplifier configurations --- why?

Difference Amplifier

• Also a problem for difference amplifiers

Difference Amplifier

• We have to scale the voltage v_b to achieve balanced amplification of v_b - v_a

• Opamp data sheets specify the CMRR for the opamp itself, but the opamp differential amplifier circuit also has a CMRR

Input-Currents and -Resistances

• There is some small dc current flowing into/out of the inputs at all times -- input bias current

• There is also a component of input current that changes with input voltage (both common mode and differential) --- input resistances

Input Resistance

- These resistances are generally quite large: $R_{cm} \sim 100 M \Omega$, and $R_{id} \sim 1 M \Omega$
- These resistances are even larger for MOS opamps

Input Resistance

• These opamp input resistances do not affect an inverting amplifier configuration as long as R_1 is much less than R_{id} and R_{cm}

• But these resistances are what determines the input resistance of a noninverting amplifier configuration

Input Resistances

• The resistors R_1 and R_2 should be kept significantly smaller than the input resistances for the gain to be close to ideal

Nonzero Output Resistance

- We also have to keep in mind that the opamp output cannot source an infinite amount of current --- so we can't drive arbitrarily small resistance loads
- This is modeled by an output resistance, R_o

note that v_o definition is changed when output resistance is added to the model

Measuring Output Resistance

Modeling Output Resistance

• Since the open loop gain depends on frequency, so does the opamp circuit output impedance

Input Bias Current

• The input bias current is not frequency dependent, but can cause an unwanted dc output response

Compensating for I_B

• In practice, a resistor is added so that the bias current drops are compensated properly between the two ports

dc Offset Voltage

- Another unwanted dc output signal is due to the dc offset voltage
- A dc differential input is required for a real opamp to zero the output
- This offset is due to mismatch in transistor parameters, and is temperature dependent --- more on this later in the course

dc Input Offset Voltage

• Calculate output voltage due to dc input offset voltage

ac Coupling

• We can avoid this offset voltage at the output by using ac coupling

