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MATLAB Experiment II – System Modelling 
 

2.1 Introduction 

The MATLAB control and signal processing toolboxes contain many helpful commands for the 
analysis of control systems. In this laboratory exercise, you will be introduced to the MATLAB 
functions for obtaining the partial-fraction expansion of a continuous-time control system, 퐻(푠), 
the zeros and poles of 퐻(푠) and the corresponding pole-zero diagram (s-plane plot). 
 

2.2 Partial Fraction Expansion of H(s) 

MATLAB has a command to obtain the partial-fraction expansion of a transfer function H(z). 
Consider the following transfer function: 
 

퐻(푠) =
퐵(푠)
퐴(푠)

=
num

den
=
푏 푠 + 푏 푠 + ⋯+ 푏
푎 푠 + 푎 푠 + ⋯+ 푎

, 

 
where 푎  and 푏  are the 푘  coefficients of the transfer-function polynomials in descending 
powers of the complex variable s. Note that some of these coefficients may be zero. In MATLAB, the 
row vectors, num and den, specify the coefficients of the numerator and denominator of the 
transfer function. That is, 
 

num = [푏    푏   ⋯ 푏 ] 
den =  [푎    푎   ⋯ 푎 ] 

The command 
[r, p, k] = residue(num, den) 

 
finds the residues (or zeros), the poles and direct terms of a partial-fraction expansion of the 
discrete-time, transfer function, H(z), and places them in the column vectors r, p and k, 
respectively. If there are no multiple roots, then the partial-fraction expansion of H(z) is given by: 
 

퐻(푠) =
퐵(푠)
퐴(푠)

=
푟

푠 − 푝
+ ⋯+

푟
푠 − 푝

+ 푘(푠). 

 
If 푝 = 푝 = ⋯ = 푝 , the pole 푝  is a pole of multiplicity m. In this case, the expansion 
includes terms of the form: 
 

푟
푠 − 푝

+
푟

(푠 − 푝 ) +⋯+
푟

(푠 − 푝 ) . 

 
 
Example. Consider the following transfer function 
 

퐻(푠) =
퐵(푠)
퐴(푠)

=
18푠

18푠 + 3푠 − 4푠 − 1
. 

 
In order to obtain the zeros, poles and direct term for this transfer function, we write the following 
in MATLAB: 
 
>> num = [18 0  0  0]; 
>> den = [18 3 -4 -1]; 
>> [r, p, k] = residue(num, den) 
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r = 
    0.1800 
   -0.3467 
    0.0444 
p = 
    0.5000 
   -0.3333 
   -0.3333 
k = 
     1 
 
This is the MATLAB partial-fraction expansion of the transfer function 퐻(푠): 
 

퐻(푠) =
18푠

18푠 + 3푠 − 4푠 − 1
=

0.18
푠 − 0.5

−
0.3467

푠 + 0.3333
+

0.0444
(푠 + 0.3333) + 1 

  
The residue function can also be used to form the transfer-function polynomials (numerator and 
denominator) from the partial-fraction expansion using the command   
 

[num, den] = residue(r, p, k) 
 
where r, p and k are the vectors containing the residues, poles and direct terms, respectively. The 
outputs num and den are vectors containing the numerator and denominator polynomial 
coefficients, respectively. Therefore, given the previous MATLAB output, the transfer function for 
the corresponding partial-fraction expansion is obtained in MATLAB as follows: 
 
>> [num, den] = residue(r, p, k); 
>> printsys(num, den, ‘s’) 
  
num/den =  
  
   s^3 - 4.996e-016 s^2 - 3.8858e-016 s - 8.3267e-017 
   -------------------------------------------------- 
        s^3 + 0.16667 s^2 - 0.22222 s - 0.055556 
 
where the command 
 
   [num, den] = printsys(num, den, ‘s’) 
 
prints the num/den in terms of the ratio of polynomials in the variable s. 
 
Question: Why does the numerator of transfer function produced by MATLAB differ from 퐻(푠) 
given above? 
 

2.3 The Zeros and Poles of H(s) 
One way of obtaining the poles, zeros and gain of a transfer function in MATLAB is through the use 
of the function: 
 

[z, p, k] = tf2zp(num, den). 
 
This function returns the vectors z and p containing the poles and zeros, as well as a real number, k, 
which is the gain factor of the transfer function. 
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Example. Consider the system defined by: 
 

퐻(푠) =
퐵(푠)
퐴(푠)

=
4푠 + 16푠 + 12

푠 + 12푠 + 44푠 + 48푠
. 

  
The zeros (z), poles (p) and gain (k), of 퐻(푠) can be obtained with the following MATLAB code: 
 
>> num = [0 0 4 16 12]; 
>> den = [1 12 44 48 0]; 
>> [z, p, K] = tf2zp(num, den) 
z = 
    -3 
    -1 
p = 
         0 
   -6.0000 
   -4.0000 
   -2.0000 
K = 
     4 
 
The zeros are at s = 3 and s = 1. The poles are at s = 0, 6, 4, and 2. The gain K is 4. If the zeros, 
poles, and gain K are given, then the following MATLAB program will yield the original num/den. So, 
given the previous MATLAB outputs, we can obtain the numerator and denominator polynomials of 
H(z), thus:  
 
>> [num, den] = zp2tf(z,p,K); 
>> printsys(num, den, 's') 
num/den =  
  
         4 s^2 + 16 s + 12 
   ---------------------------- 
   s^4 + 12 s^3 + 44 s^2 + 48 s 
 
 

2.4 Block Diagrams and Step Response 

In control systems analysis, we frequently need to simplify a network of interconnected transfer 
functions and into a single transfer function which is then used in subsequent calculations for 
analysis purposes. There are three different types of connections between transfer function that are 
usually encountered in practice: cascade-connected, parallel-connected and feedback-connected 
(closed-loop) transfer functions. MATALB has convenient commands to obtain these transfer 
functions. To obtain the transfer functions of the cascaded, parallel, feedback and unity feedback 
systems, the following commands are used, respectively: 
 

[num, den] = series(num1, den1, num2, den2) 
[num, den] = parallel(num1, den1, num2, den2) 
[num, den] = feedback(num1, den1, num2, den2) 
[num, den] = cloop(num1, den1, -1) 
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Example. Suppose the following transfer functions are connected as shown in Figure 1: 
 
 

퐺 (푠) =
num1
den1

=
10

푠 + 2푠 + 10
 

 
 

퐺 (푠) =
num2
den2

=
5

s+5
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: (a) Cascade (series) system, (b) parallel system and (c) feedback system. 
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The following program gives the overall transfer function 푌(푠)/푋(푠) for each arrangement of 
퐺 (푠) and 퐺 (푠). 
 
>> num1 = [0 0 10]; 
>> den1 = [1 2 10]; 
>> num2 = [0 5]; 
>> den2 = [1 5]; 
>> [num, den] = series(num1, den1, num2, den2); 
>> printsys(num, den) 
num/den =  
  
              50 
   ----------------------- 
   s^3 + 7 s^2 + 20 s + 50 
 
>> [num, den] = parallel(num1, den1, num2, den2); 
>> printsys(num, den) 
num/den =  
  
      5 s^2 + 20 s + 100 
   ----------------------- 
   s^3 + 7 s^2 + 20 s + 50 
 
>> [num, den] = feedback(num1, den1, num2, den2); 
>> printsys(num, den) 
num/den =  
  
           10 s + 50 
   ------------------------ 
   s^3 + 7 s^2 + 20 s + 100 
 
 
>> [num, den] = cloop(num1, den1, -1); 
>> printsys(num, den) 
  
num/den =  
  
         10 
   -------------- 
   s^2 + 2 s + 20 
 
The step function calculates the unit step response of a linear system. The step function is very 
important, since control system performance specifications are often given in terms of the unit step 
response. For example, the step response of the unity feedback system can be investigated using the 
following code: 
 
[y,x] = step(num,den); 
>> figure,plot(y),grid 
>> xlabel('Time [sec]'),ylabel('Output') 
>> title('Step response of a 2^n^d order system') 
 
Use the HTML help provided by MATLAB to gain a more in depth understanding of this function; in 
particular, look at the other arguments accepted by this function. 
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