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Introduction 
 

 Microcontrollers have proliferated into every nook and cranny of our daily lives from simple 
8-bit devices that control our toaster ovens to powerful 32-bit DSP’s that provide us with the rich 
media and entertainment that we have all become accustomed to.  Without microcontrollers, our 
lives would not only be less exciting but we would lose a level of control over our world that we can 
no longer live without.  Billions of microcontrollers are sold each year with the number continually 
climbing.   

What happens to these microcontroller based products when millions of units have shipped 
and a software “enhancement” needs to be made?  Does every unit need to be returned to the 
manufacturer every time the software is updated?  Are televisions, blue-ray players and other 
devices returned to the manufacturer periodically so that the customer can continue to have the 
latest and greatest software operating on their device?  The obvious answer to these questions is 
absolutely not and the primary reason why is that most systems ship with a boot-loader on-board. 
 A boot-loader is an application whose primary purpose is to allow a systems software to be 
updated without the use of specialized hardware such as a JTAG programmer.  In certain cases, it 
can also be the earliest point at which the integrity of an embedded system can be checked.  The 
boot-loader manages the systems images.  There are many different sizes and flavors to embedded 
boot-loaders.  They can communicate over a variety of protocols such as USART, CAN, I2C, Ethernet, 
USB and the list goes on for as many protocols that exist.  Systems with boot-loaders have at least 
two program images coexisting on the same micro-controller and must include branch code that 
performs a check to see if an attempt to update software is in progress.  
 During the initial stages of product development it is very common for the boot-loader to be 
overlooked by the development team.  The primary reason for this is that the boot-loader is not the 
primary end product that is going to be sold to the customer but the boot-loader is potentially the 
most important part of that product.  The boot-loader allows a company to launch their product 
with software that only fulfills a portion of their final feature set and then add features to their 
product once it has been launched into the market.  It also allows them to fix bugs that are 
discovered after the system has been released into the wild.   

For an embedded software engineer, a boot-loader requires a full understanding of how a 
processor works, how to utilize its memory and how to work on the processor at the lowest levels.  
Boot-loader development can be an extremely challenging endeavor to undertake but absolutely a 
rewarding one.  Once a developer has gone through the process, each additional boot-loader 
becomes easier and easier to implement by following a common and consistent approach to boot-
loader design.   
 The purpose of this paper is to break down the components necessary to develop a boot-
loader and present it in an easy to understand methodology that the reader can then use to 
implement their own boot-loader.  While boot-loaders are small programs, they often bring out the 
worst and nastiest bugs that can be very intimidating to a developer.  Not only does the 
programmer have to dig into flash programming but there is also a need to do a deep dive into 
memory maps, re-locatable vector tables, copy down functions, flash partitioning, code branching 
and a number of other tasks which can at first seem monumental and nearly impossible to 
overcome on a short development schedule. 
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Boot-loader Requirements 
 

 Before any software project is undertaken, it is always recommended that at a minimum 
some informal process of requirements gathering be performed.  Requirements dictate to the 
developer what it is that they are going to be designing.  Requirements can serve as a roadmap in 
the design process.  The IEEE Computer Societies Software Body of Knowledge (SWEBOK) defines a 
software requirement as “a property which must be exhibited in order to solve a specific problem” 
(Society, 2004).  The requirements tell the software developer key properties that the software 
must exhibit in order to present an appropriate solution.   
 There is no such thing as a complete list of project requirements from a customer.  Project 
requirements tend to be fluid and often change throughout the design process.  Modern day 
software processes such as Agile take these changes into effect and break the design process up into 
iterations of a fixed period of time.  At the start of each iteration, the requirements are reviewed 
with the customer, allowing updates and changes to be made in addition to highlighting the critical 
path for the iteration.  The key components of successful requirements gathering and execution 
include the following: 
 

• Requirements Elicitation 

• Requirements Analysis 

• Requirements Specification 

• Requirements Validation and Traceability 

 
There are many methods that can be used to track software requirements.  Software 

Requirements Specifications (SRS) are recommended as best practices by the IEEE Computer 
Society and CMMI.   The SRS can be put together at the start of the project and revisited during each 
iteration of the product development cycle and updated in order maintain the latest requirements.  
Other formal methods exist such as the use of Rally, Wrike or other online tools to electronically 
track requirements. 

Each boot-loader will have its own unique set of requirements based on the type of 
application; however, there are still a few general requirements that are common to all boot-
loaders.  These requirements can be broken down into seven fundamental groups of requirements 
that are common to the boot-loader.  They are 

 
1) Ability to switch or select the operating mode (Application or boot-loader) 

2) Communication interface requirements (USB, CAN, I2C, USART, etc) 

3) Record parsing requirement (S-Record, hex, intel, toeff, etc) 

4) Flash system requirements (erase, write, read, location) 

5) EEPROM requirements (partition, erase, read, write) 

6) Application checksum (verifying the app is not corrupt) 

7) Code Security (Protecting the boot-loader and the application) 

Each of these categories can be broken down to generate a list of boot-loader requirements 
for any application.   A broken down list can be found in Appendix A.   
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The Boot-loader System 
 

 Boot-loaders can come in many different sizes and in many different flavors but in general 
the operation of a system with a boot-loader is relatively standard.  There are three major 
components to these systems that can be seen in Figure 1.  They are the branching code (green), the 
application code (blue) and the boot-loader code (red).  For most systems we prefer them to be 
executing the application path the majority of their operational life.  Figure 1 highlights the 
execution path to get to the application by the dashed red line.   

 

 
Figure 1 – General Boot-loader Operation 

 
The branching code (green) makes the decision as to whether the boot-loader is loaded or 

whether the application is loaded.  The branching code in a very simple system can be nothing more 
than checking a GPIO for a certain state to enter the boot-loader; however, such basic systems are 
usually only used by chip manufacturers in order to demonstrate the functionality of the chip and is 
usually not recommended if a robust boot-loading solution is required.  In a more complex system, 
the boot-loader may completely load itself into memory and perform some basic system functions 
for a short period of time before making the branching decision possibly to perform a system 
integrity check.  For this reason, in most cases the branching code is included in the boot-loader.  A 
more detailed discussion of what checks should be performed before branching to the application 
will be discussed later in this paper. 

The application code (blue) is executed only after the branching code has made the decision 
that there are no requests to enter the boot-loader and that the application code is safe to execute.   
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Even while the application is loading and performing its duties, it should be designed so that it can 
accept a command to enter the boot-loader.  When the application receives such a request the 
application will perform any cleanup that needs to be performed and when it is safe to do so the 
application will perform a soft reset of the system.  In most cases this is done by writing incorrect 
values to the watchdog timer that in turn will then cause a power-on-reset of the system.  
Additional details of how to make the branching code recognize that there has been a request to 
enter the boot-loader will be discussed later in the paper. 
The boot-loader code (red) performs all of the functions of the boot-loader.  When the boot-loader 
is loaded into memory it will begin initializing a basic subset of peripherals that are required in 
order for the boot-loader to perform all of its functions.  These peripherals are typically the system 
clock, interrupt service routines and tables, a communication peripheral and perhaps a state-
machine or basic task scheduler.  This allows the boot-loader to communicate with the outside 
world and accept commands to perform flashing instructions.  A detailed examination of how the 
boot-loader does this will be examined in the rest of this paper. 

   
 

Boot-loader Behavior 
 

A boot-loader in itself is not that different from a standard application; in fact, it is a 
standard application.  What makes a boot-loader special is that it is sharing flash space with another 
application and has the capability to erase and program a new application in its place.  Like every 
other application, one of the first priorities of the boot-loader is to initialize the processor and the 
minimum number of peripherals required to carry out boot-loading functions.  It’s best to keep the 
use of peripherals to as few as possible in the boot-loader in order to attempt to maximize the flash 
space that will be available for the application code. 
 There are two behavioral models that describe how a boot-loader can behave.  In the first 
model, the boot-loading process is completely automated and self-contained within the system.  An 
example of this would be an SD card boot-loader.  The boot-loader would automatically detect the 
new firmware and manage its own flashing process.  Commands from an external source would not 
be required to successfully carry out the boot-loading process. 
 In the second model, the system does not automatically handle the boot-loading process 
itself.  Instead, the boot-loader initializes into an idle state and awaits instructions from an outside 
source.  This source would typically be a pc based software application that commands the boot-
loader into the different states necessary to flash a new image onto the system.  The primary reason 
for the external software application to command the process is that in most applications without 
an SD card, there is not sufficient space to retrieve the whole software image.  Instead, an external 
source with the image acts as the master of the boot-loading process.  This paper will focus on the 
later model. 

Each boot-loader will be unique in the number and type of commands that are supported.  A 
sophisticated boot-loader will have more commands than a simple boot-loader.  Flash usage for the 
boot-loader increases with each command that is supported potentially resulting in less space for 
the application image.  At a minimum the boot-loader should support three commands.  
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1) Erase the flash – Removal of the application image from memory 

2) Write flash – Addition of a new application image to memory 

3) Exit / Restart – reboot with the intention of entering the application code 

 
With these three commands all basic functions of writing an image to flash can be accomplished.  
There are more sophisticated commands that can be implemented that would greatly enhance the 
capabilities of the boot-loader.  A few examples are 
 

1) Unlock the unit – enter a security key to allow flash to be erased and then written 

2) Erase EEPROM – erase configuration data stored on the system 

3) Write EEPROM – write configuration data to the system 

4) Read EEPROM  - verify configuration data from the system 

5) Read flash – verify that the application image is correct 

6) Image Checksum – calculate an image checksum that can be checked for corrupted 

application 

7) Lock the unit – enter security mode that prevents flash from being written  

 
Locking and unlocking the system provides added robustness and security to the system.  It 
prevents reading the application image out of the system in addition to accidental erasing or 
writing of the flash.  EEPROM functions can be useful in the boot-loader particularly during the end-
of-line of the manufacturing process.  The boot-loader can act as a special mode in which to 
program the systems configuration data during the initial start-up of the system.  The image 
checksum adds robustness to the system by allowing the system to verify that nothing has 
happened to the application image and that it is still completely intact. 
 

The typical sequence for programming a device can be found below:  
1) Open image flashing tool (if supported) 

2) Start the boot-loader 

3) Erase the flash 

4) Send binary file information to the boot-loader (to be discussed later) 

5) Generate Checksum 

6) Quit the boot-loader and enter the application 

 
The final programming tool used to flash a new application image with the boot-loader would be 
completely automated; however, for the software engineers that develop a boot-loader, a tool that 
allows each step in the process to be monitored and tested is required.   
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Application Behavior 
 

 The behavior of the application image is of for the most part not of any interest to the boot-
loader designer except in one aspect; the application needs to be capable of receiving a command to 
enter the boot-loader.  This means that the application needs to have two boot-loader like 
capabilities: 

 
1) Set a piece of information that the boot-loader can detect to enter boot-load mode 

2) Reset the system to initiate a branching decision 

 
The best place for the application to store a value that can be detected by the branching code is 

an EEPROM configuration value.  EEPROM in most cases exists in a memory space that can be 
shared by both the boot-loader and the application.  When the application receives a request to 
enter the boot-loader, the application can write a value to EEPROM and then perform the second 
function which is to reset the system.   
 The reset of the system is performed by entering an infinite loop, allowing the watchdog timer 
to reset the system or by purposefully writing incorrect values to the watchdog register to force a 
software reset.  The preferred method is to write incorrect values to the watchdog register because 
it guarantees that the system will be restarted immediately and minimizes delays. 

 
Start-Up Branching 
 

 When the system starts up, there are at least two different software images that can be 
loaded and executed by the micro-controller, the boot-loader, the application and possibly a back-
up application image.  It is therefore necessary that as part of the boot-loader image code a 
branching algorithm be included that can handle the decision making process of which image to 
load.   
   There are many different methods that can be used to decide which image to load.  The 
simplest method that can be used and is most often used in example code from chip manufacturers 
is the use of a GPIO line to make the decision.  For example, if the GPIO signal is high, load the 
application; if it is low then load the boot-loader.  This method is very simple and is often 
implemented using assembly language in order to quickly make the decision and jump to the image.  
Listing 1 shows a simple example for the Freescale S12X.  In this example, if the logic signal checked 
is grounded, the top of the stack is loaded and program flow jumps to the boot-loader main 
function.  If the logic signal is high, the application reset vector is loaded and then executed.   
 Closer examination of Listing 1 will reveal that there is a potential problem.  What happens if 
the boot-loader has been loaded onto the micro-controller but an application has not yet been 
loaded and there is a request to enter the application?  The code in Listing 1 will jump to the 
application anyways and jump right off into the weeds.  This leads to one of the most important 
code branching checks; verification that the application reset vector exists. 
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; ------------------------------------------------------------------------- 

 

  brclr $0259, $01, GoBoot  ; if PP0 == 0 then start the boot-loader 

                            ; if PP0 == 1 then start the application 

   

  ldd   AppResetVect        ; Load the Application Reset Vector 

  ldx   AppResetVect 

  jmp    0,x                ; jump to the application 

   

GoBoot: 

  lds  #StackTop 

  jmp  main       ; jump to the boot-loader 

 

; ------------------------------------------------------------------------- 

Listing 1 

 

When a microcontroller flash section has been erased it will be erased to all 1’s.  This means 
that if the reset vector is all 1’s, we know that this reset vector is not valid and that the application 
has not yet been programed.  By performing an extra check on the application reset vector the 
programmer can prevent the code from branching to a non-existent application.  Instead the boot-
loader would execute and wait for programming instructions.  Listing 2 is an updated version of 
Listing 1 that includes the extra check of the application reset vector.   

 
; ------------------------------------------------------------------------- 

 

  brclr $0259, $01, GoBoot  ; if PP0 == 0 then start the boot-loader 

                            ; if PP0 == 1 then start the application 

   

  ldd   AppResetVect        ; Load the Application Reset Vector 

  cpd   #$ffff              ; Compare it to 0xFFFF 

  beq   _GoBoot             ; if the application reset vector is not  

        ; available then start the bootloader                             

  ldx   AppResetVect 

  jmp    0,x                ; jump to the application 

   

_GoBoot: 

  lds  #StackTop 

  jmp  main                 ; Continue Boot-loader startup 

 

; ------------------------------------------------------------------------- 

Listing 2 

 

 A single I/O line being used to branch to the boot-loader is not a very robust solution.  A user 
could accidentally push the boot-load button or a noise event could cause the system to enter the 
boot-loader.  If the boot-loader is entered, there is no guarantee that an image loading tool is 
attached.  In most cases you will not find a GPIO triggered boot-loader implemented on a 
production product.  Instead, a common method used to detect a request to enter the boot-loader is 
to change an EEPROM value. 
 Nearly every embedded system stores configuration values in some type of EEPROM 
whether its on-chip, off-chip or part of some emulated EEPROM in flash.  Storing a byte or a word 
configuration value for boot status is then a natural place to store which mode the system should  
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boot into.  If the micro-controller supports on-chip EEPROM, the branching code from Listing 2 can 
evolve into Listing 3.  In Listing 3, the GPIO check has been removed and instead the branch first 
checks that an application reset vector exists and if it does then it checks the EEPROM for which 
mode to jump to.  If an ASCII character ‘B’ is stored then load the boot-loader.  If it is any other value 
than the application code will be loaded.     
 Every microcontroller does not necessarily have internal EEPROM.  Sometimes a system has 
EEPROM externally such as on a Serial Peripheral Interface (SPI) or Inter-Integrated Circuit (I2C).  
In these types of systems, the software developer won’t be able to quickly check the EEPROM byte 
but will instead need to further initialize the system.  In this case, there is an advantage to building 
the branching code into the boot-loader. 
 By integrating the branching code into the boot-loader there are a number of more 
sophisticated checks that can be performed by the branching code. The first of which is an 
application checksum.  As part of the boot-loading process, the boot-loader can perform an image  
checksum on the application when it is written to flash.  Then when the system starts, the branching 
code can calculate the flash image in order to verify that the application is complete and has not 
been corrupted before jumping to the application and running code.     
 
; ------------------------------------------------------------------------- 

 

  ldd   AppResetVect        ; Load the Application Reset Vector 

  cpd   #$ffff              ; Compare it to 0xFFFF 

  beq   _GoBoot             ; if the application reset vector is not  

        ; available then start the bootloader   

 

  ldd   EepromProgStatus    ; Read the programmed status byte from eeprom 

  cpd   #’B’      ; Compare it to ‘B’ for boot-load 

  beq   _GoBoot      ; if Status == ‘B’ for Boot-loader then jump to 

; boot-loader, otherwise continue to the      

; application 

                           

  ldx   AppResetVect 

  jmp    0,x                ; jump to the application 

   

_GoBoot: 

  lds  #StackTop 

  jmp  main                 ; Continue Boot-loader startup 

 

; ------------------------------------------------------------------------- 

Listing 3 – EEPROM Branching Code  

 

 A final check that can be performed by the branching code is a back-door access of sorts.  
The branching code can look for a programming tool that is attached.  The branching code sends out 
a message to the programming tool that if the programming tool is present will respond with an 
acknowledgement.  If the acknowledgement is received then the system will load the boot-loader 
instead of loading the application code.   
 Listing 4 shows a robust solution to the branching code.  The code will calculate the 
application image checksum.  When it is completed, the branching code will perform each of the 
following checks: 
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1) Does the application reset vector exist? 

2) Is the Mode set to ‘B’? 

3) Is a programming tool present? 

4) Is the application checksum valid? 

; ------------------------------------------------------------------------- 

//  When the checksum has completed and the timer has expired for waiting    //  

for a programming tool to respond, perform the branch checks.  

   if((Checksum_Complete == TRUE) && (StartUpTmr == EXPIRED)) 

   { 

    if((*ResetVector != 0xFFFF)     &&  // Does app reset vector exist? 

(Mode != 'B')        &&  // EEPROM byte set? 

(Boot_ToolPresent != TRUE)   &&  // Tool present? 

(Checksum_Valid != FALSE))    // Checksum valid? 

    { 

      App_LoadImage(); 

    } 

    else 

    { 

      Boot_LoadImage(); 

    } 

   } 

; ------------------------------------------------------------------------- 

Listing 4 – EEPROM Branching Code  

 

Memory Partitioning 
 

 Every microcontroller has some form of non-volatile memory that is used to store the 
program.  The most commonly used type of memory is flash.  Flash is broken up into divisible 
sections.  The smallest section of flash is often referred to as a page.  Pages are organized into larger 
structures known as sectors.  Sectors are in turn organized into larger structures known as blocks.  
Each microprocessor is different as to how these sections of flash can be manipulated.  Most will 
allow you to write a single byte to flash at a time.   Others may require that 8 bytes or 256 bytes be 
written at one time.  In most cases, the smallest section of flash that can be erased at a time is a 
single sector that often consists of 4kB. 
 It is important that before a designer gets too far in their boot-loader design that they pull 
out the microcontroller datasheet and read through the flash and memory organization chapters.  
In fact, it is recommend that the designer read it, go to lunch and then read it again.  It would be a 
good idea to read it the next day as well.  The primary reason for studying the memory sections of 
the manual in such detail is that while memory mapping seems straightforward and easy to 
understand for some reason it always becomes a struggle when implementing the details.  It is good 
for the software developer to get an expert understanding of how the microcontroller memory is 
organized and how it functions.  It won’t be long before the developer will need to manipulate the 
flash memory in order to burn a new application image to it. 
 The primary purpose for detailed examination of the memory map is to determine what 
sections of flash are available and best used for the boot-loader.  A software developer need to 
examine the memory map and decide where in flash the boot-loader is going to be located and 
where in flash the application is located.  These two flash areas need to be completely separate from  
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each other.  The boot-loader must understand the existence of the flash memory map so that it can 
write an application to flash.  On the other hand, the application should never know that the boot-
loader section exists.  That way, there is not the possibility of the application trying to over-write 
the boot-loaders program area.  This section of flash can usually be protected in a number of ways 
but in general the two code areas need to be kept separate. 
 Each microcontroller manufacturer organizes the memory map in a different manner in 
addition to offering different features that can be utilized by the boot-loader.  This can be seen in 
Figures 2 and 3.  Figure 2 shows part of the memory map from a TI TMS320F28035 with 64k of 
flash broken up into 8 sectors of 8k of flash each.  Figure 3 shows part of the memory map from a 
Freescale S12X with up to 1 MB of flash broken up into 4K sectors. 
 

    
       Figure 2           Figure 3 
 

There are a number of factors that should be taken into account when selecting where to locate the 
boot-loader.   
 

1) Size of the boot-loader 

2) Location of the vector tables 

3) Write protection and code security flash sections 

 
 Program space is always at a premium.  From a manufacturing standpoint the preference is 
usually to keep the flash size as small as possible in order to save a few cents per unit.  This means 
that we want to keep the boot-loader as small as possible in order to provide the maximum amount 
of flash space to the application.  After all, the developer wants the application to be running and 
doing all those cool and nifty things not the boot-loader.  So how much space should be allocated for 
the boot-loader?   
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At a minimum, allocate the smallest erasable block of flash that the processor can handle.  

This may be 1k, 4k or even 8k!  A good starting rule of thumb is to allocate 4kB of flash space for the 
boot-loader.  Odds are the developer will not come close to filling it but for the first pass allocate 
4kB and once everything is working the memory map can be tweaked.  The developer should not 
forget that there is a minimum size that can be erased.  For the S12X the minimum flash size that  
can be erased at a time is 256 bytes.  That is easily manageable.  However, for the C2000, the 
minimum size of flash is an entire 8kB sector!     

Another important aspect of the flash to look at is any section specifically designed for a 
boot-loader?  Many processors today have space allocated for the sole purpose of putting a boot-
loader there.  Special flash protection can often be enabled in these sections so that you can 
guarantee that the boot-loader won’t be erased or over-written by accident.   Read that chapter 
again on memory organization and while you are at it read the one on flash memory.  Note anything 
special about the memory map.  For example, the C2000 has One Time Programmable sections and 
secure code sections while the S12X has only secure code sections.  The C2000 OTP section is only 
1kB so if the boot-loader is small enough you will want to take advantage of this section.   You will 
not be able to use OTP during development but once the boot-loader works, is tested and validated 
the linker can be adjusted to use OTP. 
 Once the flash area(s) has been selected, it is important to update the linker for the 
application to exclude this area of memory.  It is critical to add really good comments on this area of 
memory and why this range was selected.  When maintenance is being performed a year later and 
someone is looking for more flash space, if the code is documented well the flash space that the 
boot-loader resides in won’t be in jeopardy of being pillaged!   
 
 

Reset and Interrupt Vectors 
 

 Reset vectors can become a confusing concept when they become mixed in with the 
development of a boot-loader.  When developing application code software developers typically 
don’t need to think about where the reset vector is stored, where it’s pointing or really what it is 
doing.  The application libraries just handle everything for us and we end up in main() when we 
start up our system and start debugging.   
 The reset vector is the location in memory where the first instruction for the application is 
located.  When a processor is first started up it begins program execution at the address stored in 
the reset vector.  For a system with a boot-loader, this address will be the branching code or entry 
into the boot-loader itself.  So if the processor reset vector is already used by the boot-loader, how 
on earth does code branch to the application code?  Where is the application reset vector stored? 
 In simple terms, anywhere the developer wants it to be.  One of the most common 
approaches to handling the reset vector in an application is to leave it in the default location.  While 
in the end this doesn’t help, it does for the engineers that are developing the application.  If the reset 
vector is moved to a unique location issues with power-up and resets can result when the boot-
loader is not used. Basically the reset vector location that the processor is looking for won’t be valid. 
 The heavy thinking as to where to locate an applications reset vector and how it gets there is 
squarely placed on the boot-loader designer.  The common approach to take is when the binary file 
is read into the flashing software, it looks through the records and when the application reset vector  
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is found it relocates it to the address specified by the boot-loader.  This has the advantage of 
allowing the application engineer to develop their software without needing to worry about what is 
going on with the boot-loader (except for flash usage).  Another method is to have the boot-loader 
itself monitor for the reset vector and put it in the location of its choosing.  By doing this, the boot- 
loader designer has complete control over the reset vector and does not need to rely on another 
application properly translating the reset vector.   
 It is still up to the boot-loader designer to decide where to place the reset vector.  It can 
really go just about anywhere provided that location is carved out in flash for that purpose.  
However, the designer will most likely want to select either the first address in the flash space or 
the last.  By doing this contiguous memory space is not interrupted.  For example, in the C2000, in 
the boot-loader you can define a reset vector location in the linker as follows: 
 APP_RESET : origin = 0x3F5FFB, length = 0x000002    /* Application Reset Vector */     
This assumes that sector A is allocated to the boot-loader and the next two addresses after sector A 
are allocated for the application reset vector.  The application would then start after that.   
 The reset vector is not the only complication associated with the boot-loader.  The boot-
loader like any application will need a vector table.  The application that it jumps to will also need a 
vector table.  This means that that is an extra vector table that needs to be placed somewhere.  In 
some processors this is not an issue.  For example, the C2000 more or less decides where to place it 
in flash and there is not issue.  However, the S12X has a vector table register that needs to be setup 
to tell the processor where the vectors are located.  For the boot-loader it needs to be set to one 
location while for the application it needs to be set to another.   
 Typically, the vector table for the application is stored in the flash sector directly following 
the boot-loader.  This allows the application vector table to be at the “top” of flash, where it would 
typically be found if a boot-loader was not present.  The vector table for the boot-loader is stored 
with the boot-loader in protected flash. 
 
 

Application File Format Selection 
 

 Each manufacturer, compiler vendor and tool manufacturer have their own file format that 
they support to put code onto the microprocessor.  Over the years instead of a common standard 
being developed that everyone could agree on, everyone more or less developed their own standard 
binary file format.  That said, there are still a number of formats which are commonly used or have 
been somewhat adopted and have some degree of support by most compilers.  These include 
Motorola S-Records, Intel Hex file format, binary and COFF(Common Object File Format)  files.   
 The greatest recommendation when selecting a file format to use is to select the format 
which is easiest for you to understand and that your compiler can compile to without too much 
extra effort.  After all, whether you like it or not at some point you are going to have to look through 
every line of one of these files looking for mishaps or issues that are causing your processor to go 
crazy.  Therefore you are going to want a format that you can understand. 
 We select a format based on its ease of use with our processor in addition to ease of 
developing and interpreting the file.  The file will need to be sent to the boot-loader which will then 
need to understand the command for the  file, be able to parse and reassemble the file, determine 
where in flash the data needs to be written and then write that data to flash.  In order to prevent  
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bugs from creeping into the design keep things simple and select a format you can understand and 
are familiar with.   
 Most compilers come with a hex conversion utility which allows for the compiler output to 
be converted to a number of common formats.  For example, the TI assembly tools allow for 
conversion to the following commonly used formats:  
 

 ASCII-Hex, supporting 16-bit addresses 
 Intel MCS-86 (Intel) 
 Motorola Exorciser (Motorola-S), supporting 16-bit, 24-bit, and 32-bit addresses 

 
Freescale Code Warrior automatically generates S-Record files with every compile making a 
conversion utility unnecessary.  S-Records are a commonly used format.  They support 16-bit, 24-
bit and 32-bit addressing.  There are 3 different types of records: header, code/data and 
termination records.  This can be seen in Figure 4. 
 

 
Figure 4 (Instruments, 2011) 

 
Each software image is made of multiple records with the S-Records file.  Figure 5 is an example of a 
couple of records that could be found in an S-Record file.  As can be seen, the file starts with the S0 
header record followed by repeated S3 records before a termination S7 record.   
 

 
Figure 5 (Instruments, 2011) 

 
Each record consists of a number fields.  The first, is the record type consisting of the S type.  Next 
the record contains the number of bytes that are contained within the record followed by the 
address that the data should be placed in within flash.  Finally the data followed by a record 
checksum.  The checksum is calculated using the least significant byte of the 1s complement of the 
sum of the values represented by the pairs of characters making up the byte count, address, and the 
code/data fields. (Instruments, 2011). 
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Embedded Application Setup 
 

 In order for the embedded application to function properly there is an important change that 
needs to be made so that it plays nice with the boot-loader.  The linker file needs to be updated so 
that it does not try to locate code or data within the boot-loader memory space. 

The linker file is used by the compiler to decide where to place functions in RAM and flash.  
While the boot-loader memory space would be protected within flash, if the application tries to 
locate itself in the flash space the boot-loader would ignore those memory locations.  The 
application would never get written correctly to flash.  This could lead to a unit that is completely 
non-functional.  It is therefore imperative that the linker be modified so that it does not occupy the 
same space.   
 There is one final adjustment that needs to be made to the application.  In the event that a 
request to update the firmware is made while the application is running the application needs to 
accept a command to enter the boot-loader.  The application therefore needs a command that can 
write an EEPROM byte to notify the boot-loader that it should run and then perform a soft reset of 
the system. 
 A common method used for restarting the system is to cause the watchdog timer to timeout 
or restart the system.  Most watchdog timers will immediately reset if incorrect values are written 
to it.  The other option would be to place the system into an infinite loop and allow the watchdog to 
time-out at its own pace. 
 
 

Troubleshooting 
 

 Unfortunately every software project at some point or another runs into problems and the 
development of a boot-loader is no different.  Undoubtedly the software engineer will run into a 
number of challenges whose solution is not evident.  There are a number of techniques which can 
be used to debug a boot-loader and application and a number of other common problems that have 
been encountered by thousands of other software developers.  There are a number of techniques 
and issues to keep in mind when debugging the boot-loader. 
 One of the most common issues is how to debug an application that has been loaded through 
the boot-loader.  It works by itself but when loaded through the boot-loader instead of seeing the 
brilliance of blinking, flashing LED’s there is nothing.  It is possible to send out status messages 
through a UART or other interface to check the status of the device but stepping through code in a 
debugger would be best.   
 Nearly every IDE has a feature that is for the most part ignored by programmers 99% of the 
time.  It is a feature that allows an engineer to add additional symbols to the debugger. When 
developing a single application there is rarely a time when you would want to add additional 
symbols; however, when debugging a boot-loaded system this feature is extremely helpful.   
 While debugging the boot-loader, an engineer can select add symbols and add in the symbols 
for the application that is going to be debugged.  An example of this is shown in Figure 6.  Now 
instead of jumping off into a hardly understandable disassembly window when the boot-loader 
jumps to the application it will instead jump to readable C code and allow debugging of the 
application as usual.  
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Figure 6 

 
 It might be that when the software developer adds the symbols they discover that the code 
never jumps to the application.  In this case, the best place to start is going to be the boot-loader 
safety checks.  Verification that the reset vector for the application exists is a good place to start.  
Verify that each safety check is indeed getting passed.   
 It may be that the boot-loader believes that the application is valid but when it jumps to the 
application somewhere in the application it fails.    The application image may not be correct or the 
copy down may not be occurring.  From most IDE’s, you can create an image of the flash space from 
a starting address to an ending address.  Take an image of the program loaded on the target by itself 
and save this file.  Then load the application through the boot-loader and save this file.  You can use 
WinMerge to compare the images.  Are they the same?  If they are then the application is getting 
there in one piece!!!  If it isn’t then there could be issues with writing the data to flash, buffer issues, 
etc.  By using this method the engineer can at least identify if the application has gotten there in one 
piece. 
 If the reset vector is good, the application image is good but the application still is not 
running properly the system could be experiencing a copy down issue.  When the boot-loader 
starts, it runs its copy down functions to setup the C environment and to setup its variables.  When 
it jumps to the application the application needs to do this exact same thing.  Now an engineer 
might think this is done automatically by the processor or the compiler.  Unfortunately this is not 
the case.  Some manufacturers do not automatically include the copy down functions into a project.  
They expect it to be placed there and called manually.  Most times the debugger will insert the copy 
down call itself even if it isn’t included in the project.  This results in an application that will 
function correctly when debugged by itself but exhibit strange behavior when loaded onto the 
system with the boot-loader.  The software engineer should check their documentation and make 
sure that this crucial piece of code is being executed.  Some processors have it burned into their 
ROM and all you need to do is call it from RAM and then the magic happens and the C environment 
will be setup properly.  
 One area that can cause extreme pain on the part of the software developer is when a boot-
loader loads itself into memory, initializes the system and then decides to jump to the application.  
Some processors have registers that are only allowed to be written or setup one time.  If the boot-
loader sets up these registers and then the application tries to set them up another way then 
misbehavior of the system can result.  There are a couple of common registers that should be 
watched for this type of behavior.  They are  

1) Watch Dog Timers 

2) Processor Mode  

3) Memory registers.   
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Troubleshooting 
 

 Boot-loaders are intimidating the first time that an engineer develops one.  There are a lot of 
things to learn and many nuances that need to be kept in mind in order to make the system behave 
properly.  It can be a struggle to get the first boot-loader up and running but once the process has 
been gone through once, each successive boot-loader becomes easier and easier to write. 
 Beware of boot-loaders developed by the manufacturer of your processor!  The examples 
that they provide are excellent at providing a quick starting point from which a developer can take 
over but provided as is they are NOT robust enough to be put into the field. 
 There is a lot to take into account when developing a boot-loader and this paper has just 
grazed the top of the process.  However, it should serve as a good starting point for the 
development of the readers’ next boot-loader project.   
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Appendix A 
 

While there are 7 classes of requirements for boot-loader design, each of these classes can be 
broken down to generate a list of requirements that can be used to guide the development of the 
boot-loader.  Below is each of the 7 classes with additional example requirements broken out below 
them.  Each boot-loader will have its own requirements and will be different in certain aspects from 
another boot-loader.   

1) Ability to switch or select the operating mode (Application or boot-loader) 

a. A GPIO input held for 10 seconds shall cause the system to enter boot-loader mode 

b. An EEPROM byte shall be used to switch modes 

c. An enter boot-loader message received within 100 ms of start-up shall cause the 

system to enter boot-loader mode 

2) Communication interface requirements (USB, CAN, I2C, USART, etc) 

a. Application images shall be transferred to the system via UART. 

3) Record parsing requirement (S-Record, hex, intel, toeff, etc) 

a. The application image shall be sent to the system in S-Record format. 

4) Flash system requirements (erase, write, read, location) 

a. The boot-loader shall be capable of erasing only the application section of flash 

b. The boot-loader shall write application image records to flash 

c. The boot-loader shall be capable of reading back specified address location in flash 

upon command 

d. The boot-loader shall be located in the first 4 kB of flash 

5) EEPROM requirements (partition, erase, read, write) 

a. The boot-loader shall partition EEPROM when commanded 

b. The boot-loader shall be capable of erasing the EEPROM 

c. The boot-loader shall be capable of reading out a specified EEPROM location 

d. The boot-loader shall be capable of writing data to specified EEPROM locations 

6) Application checksum (verifying the app is not corrupt) 

a. The boot-loader shall calculate an image checksum and store it in flash 

b. The boot-loader shall verify that the application checksum is valid before executing 

the application 

7) Code Security (Protecting the boot-loader and the application) 

a. The boot-loader shall be located in protected flash to prevent updating or 

modification at any time 

 


