
1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

10/18/2014 1

Bootloader Design Techniques for MCUs

Jacob Beningo, CSDP

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

10/18/2014 2

Session Overview

Introduction

The Boot-loader System
–Local Models

–Distributed Models

Startup Branching

Bootloader Behavior

Resetting

Memory Management

Binary Formats

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Introduction

Billions of microcontrollers sold per year

Shortened development cycles

Feature creep

Intense competition

Software bugs

How to update software in the field when bugs are
discovered or new features required?

A boot-loader is an application whose primary purpose is to
allow a systems software to be updated without the use of
specialized hardware such as a JTAG programmer.

 3 10/18/2014

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Local Single Device System

Single MCU System (Traditional / Most Common)

Flashing Method

– Laptop / Workstation

– Tablet or mobile device

– USB Flash System

4 10/18/2014

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Local Multiple Device System

Multi MCU System

Flashing Method

– Laptop / Workstation

– Tablet or mobile device

– USB Flash System

5 10/18/2014

Master MCU

– Can be updated itself

– Passes new application to slave
devices and acts as the flash tool

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Distributed Cloud Device System

MCU System

– Single MCU Devices

– Multi MCU Devices

– Systems are internet enabled

– Physical Separation from
imaging tool

6 10/18/2014

Flashing Method

– Internet Connected Devices

 Tablets

 Phones

 Computers

 Etc

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Distributed Cloud Device System 2

MCU System

– Single MCU Devices

– Multi MCU Devices

– Systems are not internet enabled

– Physical Separation from imaging
tool

7 10/18/2014

Flashing Method

– Internet Connected Devices

 Tablets

 Phones

 Computers

 Etc

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Requirements

Each boot-loader will have its own unique set of requirements based on
the type of application; however, there are still a few general
requirements that are common to all boot-loaders

1) Ability to switch or select the operating mode (Application or boot-loader)

2) Communication interface requirements (USB, CAN, I2C, USART, etc)

3) Record parsing requirement (S-Record, hex, intel, toeff, etc)

4) Flash system requirements (erase, write, read, location)

5) EEPROM requirements (partition, erase, read, write)

6) Application checksum (verifying the app is not corrupt)

7) Code Security (Protecting the boot-loader and the application)

8 10/18/2014

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Bootloader System

9 10/18/2014

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Startup Branching

The simplest method often used in example code to enter the
boot-loader is to use GPIO.

– If GPIO == HIGH then enter application

– If GPIO == LOW then enter boot-loader

The advantages are

– the code can be implemented in assembly

– the branch can be executed very quickly

– it is very simple (too simple for most applications)

The disadvantages are

– Susceptibility to start-up noise

– Requires the use of GPIO for a dedicated function

– Accidental entry into boot-loader by unsuspecting customer

 10 10/18/2014

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Startup Branching

Simple assembly branching code used in an S12X

; ---

brclr $0259, $01, GoBoot ; if PP0 == 0 then start the boot-loader

 ; if PP0 == 1 then start the application

ldd AppResetVect ; Load the Application Reset Vector

ldx AppResetVect

jmp 0,x ; jump to the application

GoBoot:

lds #StackTop

jmp main ;

; ---

11 10/18/2014

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Startup Branching

The code in the previous slide has a potential flaw. What
happens if the boot-loader has been added to the system but
the application has not yet been flashed???

When a microcontroller flash section has been erased it will be
erased to all 1’s. This means that if the reset vector is all 1’s,
we know that this reset vector is not valid and that the
application has not yet been programed. By performing an
extra check on the application reset vector the programmer
can prevent the code from branching to a non-existent
application

12 10/18/2014

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Startup Branching

; ---

brclr $0259, $01, GoBoot ; if PP0 == 0 then start the boot-loader

 ; if PP0 == 1 then start the application

ldd AppResetVect ; Load the Application Reset Vector

cpd #$ffff ; Compare it to 0xFFFF

beq _GoBoot ; if the application reset vector is not

 ; available then start the bootloader

ldx AppResetVect

jmp 0,x ; jump to the application

_GoBoot:

lds #StackTop

jmp main ; Continue Boot-loader startup

; ---

13 10/18/2014

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Startup Branching

In most cases you will not find a GPIO triggered boot-loader
implemented on a production product. Instead, a common
method used to detect a request to enter the boot-loader is to
change an EEPROM value.

Nearly every embedded system stores configuration values in
some type of EEPROM whether its on-chip, off-chip or part of
some emulated EEPROM in flash. Storing a byte or a word
configuration value for boot status is then a natural place to
store which mode the system should boot into.

14 10/18/2014

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Startup Branching

; ---

ldd AppResetVect ; Load the Application Reset Vector

cpd #$ffff ; Compare it to 0xFFFF

beq _GoBoot ; if the application reset vector is not

 ; available then start the bootloader

ldd EepromProgStatus ; Read the programmed status byte from eeprom

cpd #’B’ ; Compare it to ‘B’ for boot-load

beq _GoBoot ; if Status == ‘B’ for Boot-loader then jump to

 ; boot-loader, otherwise continue to the application

ldx AppResetVect

jmp 0,x ; jump to the application

_GoBoot:

lds #StackTop

jmp main ; Continue Boot-loader startup

 ; ---

15 10/18/2014

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Startup Branching

Integrating the branching code into the boot-
loader allows a number of more sophisticated
checks to be performed from within a higher
level language than assembly.

– Image Checksum

– Back-door access through tool presence

In addition to the standard branch checks

– Reset Vector Present

– EEPROM byte set

The branch logic task runs at a periodic rate
until the checksum has been completed and a
tool detection timer has expired

16 10/18/2014

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Startup Branching

17 10/18/2014

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Startup Branching

; ---

// When the checksum has completed and the timer has expired for waiting for a
// programming tool to respond, perform the branch checks.

if((Checksum_Complete == TRUE) && (StartUpTmr == EXPIRED))

{

 if((*ResetVector != 0xFFFF) && // Does app reset vector exist?

 (Status != 'B') && // EEPROM status set?

 (Boot_ToolPresent != TRUE) && // Tool present?

 (Checksum_Valid != FALSE)) // Checksum valid?

 {

 App_LoadImage();

 }

 else

 {

 Boot_LoadImage();

 }
}
; ---

18 10/18/2014

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Bootloader

19 10/18/2014

Requirements

–Command driven vs image driven

–Commands

 Lock/Unlock Flash

 Read/Write Configuration

 Image/Record Data

 Switch to Application

– Image Driven

 Continuously loops through image

 Completely Autonomous

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Bootloader

20 10/18/2014

Assembling the Image

–A block of image data is usually larger than can be directly
communicated

–Memory region broken up into separate packets

–Packets need to be reassembled and validity checked

–Steps

 Receive image packets

 Reassemble into image block

 Verify Checksum

 Write

 Acknowledge

–Repeat until completed

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Bootloader

21 10/18/2014

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Resetting the System

22 10/18/2014

How to reset the system

–Watchdog timer

 Infinite loop

 Illegal write to register

 Soft reset command

–Manual software reset

–Notify user to power cycle

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Memory Partitioning

Microprocessor flash space will need to be
partitioned or sectioned off in the linker file in
such as way that two memory maps exist.

– Boot-loader space

– Application space

Flash is typically organized into Pages and Sectors.

A page is typically 256 bytes. There are usually
16 pages in a Sector.

Sectors are usually the smallest “quanta” that can
be erased.

There is usually 4 kB in a Sector.

 23 10/18/2014

Flash Space

Sector

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Reset Vectors

The reset vector is the location in memory where the first instruction for the
application is located. When a processor is first started up it begins
program execution at the address stored in the reset vector.

For a system with a boot-loader, this address will be the branching code or
entry into the boot-loader itself. So if the processor reset vector is already
used by the boot-loader, how on earth does code branch to the application
code? Where is the application reset vector stored?

The application developer can leave the reset vector in its default location
so that the application can be debugged without the boot-loader.

The boot-loader programming tool or the boot-loader itself should relocate
the application vector to a predetermined location within flash. This
location can be selected relatively arbitrarily. It should be carved out in the
linker file.

APP_RESET : origin = 0x3F5FFB, length = 0x000002

24 10/18/2014

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Application Binary File Formats

Binary Formats

Motorola S-Records

Intel Hex file format

COFF(Common Object File Format)

25 10/18/2014

1
2
-C

R
S
-0

1
0
6
 R

E
V
IS

E
D

 8
 F

E
B
 2

0
1
3

Contact Information

26 10/18/2014

Jacob Beningo
Principal Consultant

P.O. Box 400

Linden, Michigan 48451

: jacob@beningo.com

: 810-844-1522

: Jacob_Beningo

: Beningo Engineering

: JacobBeningo

: Embedded Basics

